

Technische Informationen

TECHNISCHE INFORMATIONEN ROHRVERSCHRAUBUNGEN

1. AUFBAU UND FUNKTION VON SCHNEIDRINGVERSCHRAUBUNGEN

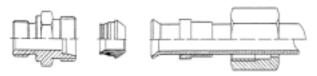
Seit vielen Jahren werden die Schneidringverschraubungen von HANSA-FLEX in der Praxis erfolgreich eingesetzt.

Diese nach DIN EN ISO 8434-1 bzw. DIN 2353 genormten Bauteile der hydraulischen Verbindungstechnik dichten aufgrund ihrer geometrischen Form Hydraulikrohre und Verschraubungen einfach, zuverlässig und sicher ab.

Bei der Montage, die sowohl im Verschraubungsstutzen als auch in speziellen Vorrichtungen erfolgen kann, wird durch das Anziehen der Überwurfmutter der Schneidring

mit seinen Kanten in axialer Richtung bewegt.

Dieser Vorschub, der über einen Montageweg genau definiert ist, sorgt für ein Eindringen der Schneidkanten in die Oberfläche des Hydraulikrohres.

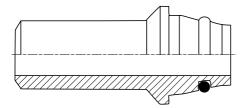

Eine eigens ausgebildete Stopkante verhindert hierbei Übermontagen, das vor den Kanten aufgeworfene Rohrmaterial wird kaltverfestigt.

Die Außenflächen des Schneidrings übertragen die einwirkenden Kräfte gleichmäßig auf den gesamten Dichtkonus der Verschraubung; die Innenkontur ist so ausgebildet, dass der Schneidring als federndes Bauteil zwischen Überwurfmutter und Verschraubungsstutzen eingespannt wird.

Diese Federwirkung dämpft Schwingungen und erhöht die Sicherheit der Verschraubung bei auftretenden Biegewechselbelastungen und Druckstößen.

Bei Beachtung der Montageanleitung sind Wiederholmontagen sicher und zuverlässig durchführbar. Die Schneidringe mit Elastomerabdichtung arbeiten nach dem gleichen Funktionsprinzip, sie sind jedoch mit zusätzlichen Elastomerdichtungen versehen, um die Betriebssicherheit noch weiter zu erhöhen.

2. AUFBAU UND FUNKTION VON BÖRDELVERSCHRAUBUNGEN


Die HANSA-FLEX Bördelverschraubungen stammen aus dem Hochdruckbereich und kommen häufig bei Anwendungen, welche starken Schwingungen ausgesetzt sind, zum Einsatz.

Sie sind selbstverständlich mit den Standard-Verschraubungsstutzen montierbar, zur Montagevorbereitung muss jedoch das Rohrende mit einem genormten 37°-Bördelkegel versehen werden.

Die gesamte Verschraubung besteht aus dem Verschraubungsstutzen, dem O-Ring gedichteten Zwischenring, dem Druckring und der Überwurfmutter.

Die Abdichtung erfolgt verschraubungsseitig durch den O-Ring des Zwischenrings, während standardmäßig die rohrseitige Abdichtung durch die Metallflächen des Bördelkegels und des Zwischenrings erreicht wird.

3. AUFBAU UND FUNKTION VON SCHWEISSKEGELVERSCHRAUBUNGEN

Die HANSA-FLEX Schweißkegelverschraubungen bieten eine weitere Möglichkeit der Verbindung von genormten Hydraulikrohren und Verschraubungsstutzen:

Der mit einem O-Ring versehene Dichtkonus ist so ausgeformt, dass er genau in das Gegenstück des Verschraubungsstutzens passt.

Vor dem Verschweißen muss der O-Ring jedoch entfernt werden und eventuell auftretende Schweißperlen müssen aus der O-Ring Nut bzw. aus der Armaturenbohrung entfernt werden

4. ALLGEMEINE HINWEISE

Die in unserem Katalog aufgeführten Rohrverschraubungen werden nach DIN 2353 bzw. DIN EN ISO 8434-1 gefertigt und sind für Anwendungen aus der hydraulischen Verbindungstechnik vorgesehen.

Das HANSA-FLEX Rohrverschraubungs-Programm enthält eine Vielzahl von Verschraubungstypen, welche über die Norm hinausgehen. Diese Sonderformen, wie z.B. Rohrverschraubungen mit Sprungmaßen sind mit ihren Anschlussmaßen der jeweiligen Norm angepasst, so dass eine Austauschbarkeit jederzeit gewährleistet ist.

Die Verschraubungen sind für die in den Normen angegebenen Betriebsdrücke ausgelegt, teilweise werden die Forderungen der Norm noch übertroffen.

Die sichere Funktion unserer Verschraubungen setzt jedoch eine genaue Einhaltung unserer beiliegenden Montagevorschriften voraus.

5. WERKSTOFFE

HANSA-FLEX Schneidring-Verschraubungen werden aus kaltgezogenem oder geschmiedetem Material hergestellt und entsprechen den technischen Lieferbedingungen für Rohrverschraubungen nach DIN 3859-1 sowie den Anforderungen der ISO 8434-1.

	Bauteil	Bezeichnung	Werkstoff	Norm
	Gerade Einverschraubungen			
	Verbindungs- und Reduzierverschraubungen			
	Schottverschraubungen	11SMnPb30+C	1.0718+C	DIN EN 10277-3
	Einschraubstutzen			
	Überwurfmuttern			
_	Flanschverschraubungen			
Stahl	Hohlschrauben			
	Winkel-, T- und L- Einschraubverschraubungen			
	Schwenkverschraubungen	11SMnPb30+C	1.0718+C	DIN EN 10277-3
	Lötstutzen			
	Schweißstutzen	S355J2G3	1.0570	DIN EN 10250-2
	Schneidringe		Nach Wahl des Herstellers	
	Stangenmaterial	X2CrNiMo17-12-2	1.4404	EN 10088-2
Edelstahl		X 6 CrNiMoTi 17-12-2	1.4571	EN 10088-2
Jels	Schmiederohling	X2CrNiMo17-12-2	1.4404	EN 10088-2
й		X 6 CrNiMoTi 17-12-2	1.4571	EN 10088-2
Messing		CuZn35Ni2	2.0540	DIN 17660 DIN EN ISO 17672

6. OBERFLÄCHENSCHUTZ

Die Oberflächen der Verschraubungskörper, Überwurfmuttern und Schneidringe aus Stahl sind standardmäßig durch eine CrVI-freie Zink-Nickel-Beschichtung nach DIN EN 15205 vor Korrosion geschützt.

HANSA-FLEX Schweißstutzen haben eine phosphatierte und geölte Oberfläche.

7. NORMUNG

Verschraubungen

HANSA-FLEX Rohrverschraubungen sind nach DIN 2353 und DIN EN ISO 8434-1 genormte Bauteile der hydraulischen Verbindungstechnik. Bei Bestellungen werden häufig auch die Norm-Bezeichnungen verwendet. Die folgende Liste zeigt eine Auswahl der verschiedenen Bezeichnungen:

HANSA-FLEX	
Bezeichnung	Bezeichnung nach Norm
XVM NWHL	Rohrverschraubung ISO 8434-1 – SDSC – LxM – B
XVM NWHS	Rohrverschraubung ISO 8434-1 – SDSC – SxM – B
XVR NWHL	Rohrverschraubung ISO 8434-1 – SDSC – L…xG – B
XVR NWHS	Rohrverschraubung ISO 8434-1 – SDSC – SxG – B
XVM NWHL ED	Rohrverschraubung ISO 8434-1 – SDSC – L…xM – E
XVM NWHS ED	Rohrverschraubung ISO 8434-1 – SDSC – SxM – E
XVR NWHL ED	Rohrverschraubung ISO 8434-1 – SDSC – L…xG – E
XVR NWHS ED	Rohrverschraubung ISO 8434-1 – SDSC – SxG – E
XV NWHL	Rohrverschraubung ISO 8434-1 – SC – L
XV NWHS	Rohrverschraubung ISO 8434-1 – SC – S
XWM NWHL	Verschraubung DIN 2353 – HLB – St
XWM NWHS	Verschraubung DIN 2353 – HSB – St
XWR NWHL	Verschraubung DIN 2353 – JLB – St
XWR NWHS	Verschraubung DIN 2353 – JSB – St
XW NWHL	Rohrverschraubung ISO 8434-1 – EC – L
XW NWHS	Rohrverschraubung ISO 8434-1 – EC – S
XTM NWHL	Verschraubung DIN 2353 – OLB – St

HANSA-FLEX Bezeichnung	Bezeichnung nach Norm
XTM NWHS	Verschraubung DIN 2353 – OSB – St
XTR NWHL	Verschraubung DIN 2353 – PLB – St
XTR NWHS	Verschraubung DIN 2353 – PSB – St
XT NWHL	Rohrverschraubung ISO 8434-1 – SDTC – L – B
XT NWHS	Rohrverschraubung ISO 8434-1 – SDTC – S – B
XSA NWHS	Rohrverschraubung ISO 8434-1 – WDSC – S – B
XSA NWHL	Rohrverschraubung ISO 8434-1 – WDSC – L – B
XSV NWHS	Rohrverschraubung ISO 8434-1 – BHC – S – B
XSV NWHL	Rohrverschraubung ISO 8434-1 – BHC – L – B
XSW NWHS	Rohrverschraubung ISO 8434-1 – BHEC – S – B
XSW NWHL	Rohrverschraubung ISO 8434-1 – BHEC – L – B
XSE NWHS	Rohrverschraubung ISO 8434-1 – WDBC – S – B
XSE NWHL	Rohrverschraubung ISO 8434-1 – WDBC – L – B
UEM NWL	Rohrverschraubung ISO 8434-1 – N – L – B
UEM NWS	Rohrverschraubung ISO 8434-1 – N – S – B
SR D	Rohrverschraubung ISO 8434-1 – CR – L – B
SR D	Rohrverschraubung ISO 8434-1 – CR – S – B

Relevante Normen für Rohrverschraubungen:

Technische Lieferbedingungen	DIN 3859-1
Montageanleitung	DIN 3859-2
Prüfspezifikation	DIN 3859-3
DIN-Verschraubungen (24°)	DIN 2353
	DIN EN ISO 8434-1
Bördelverschraubungen (37°)	DIN EN ISO 8434-2
ORFS-Verschraubungen	DIN EN ISO 8434-3
Rohranschlussseite (-stutzen)	DIN 3861
Tomansemassicite (stateen)	DIN EN ISO 8434-1
	FUADOS
nahtlose Präzisionsstahlrohre	EN 10305-4
zyl. metrische Einschraubzapfen und -löcher:	DIN 3852-1, DIN 3852-11
	DIN EN ISO 6149-1
	DIN EN ISO 6149-3
zöllige zyl. Einschraubzapfen und -löcher	DIN 3852-1, DIN 3852-11
	ISO 1179
konische Einschraubzapfen und -löcher mit	
NPT-Gewinde	ANSI/ASME B1.20.1-1983
zyl. Einschraubzapfen und -löcher mit UN- bzw. UNF-Gewinde	nach ISO/DIS 11926-1/SAE J514 mit UN/UNF-Gewin- de 2A/2B nach ANSI B1.1/ISO725
metrische Feingewinde	DIN 13, T5-T7
zöllige Gewinde	DIN EN ISO 228-1

8. BETRIEBSTEMPERATUREN VON 24°-SCHNEIDRINGVERSCHRAUBUNGEN

Werkstoff	off Druckabschläge der zulässigen Betriebstemperaturen [°C]										
Stahl	-40 °C +20 °C		+50 °C	+100 °C	+120 °C						
Stani	0%										
Edelstahl	-60 °C	+20 °C	+50 °C	+100 °C	+200 °C						
Eueistaili	()%	4%	11%	20%						
NBR	-30 °C	+100 °C									
NDN	()%									
FPM	-15 °C	+200 °C									
FFIVI	()%									

Quellen: DIN 3859-1, DIN 3771-3, DIN 8434-1

BEISPIEL:

Verschraubung aus Edelstahl

Druck: 400 bar Temperatur: 200 °C

→ Druckabschlag von 20% → Druckabschlag von 80 bar (400 x 20%)

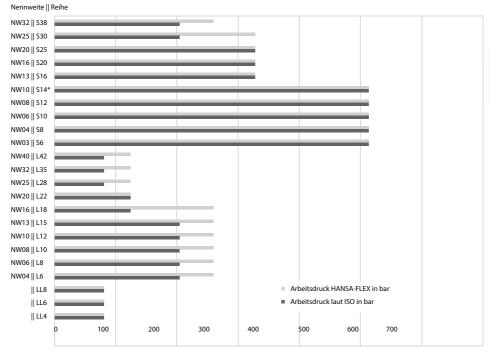
 \rightarrow Druck der Verschraubung = 400 – 80 = 320 bar

9. BETRIEBSDRUCK VON 24°-SCHNEIDRINGVERSCHRAUBUNGEN

Das HANSA-FLEX Verschraubungsprogramm ist je nach Druckstufe und Anwendungsfall in drei Baureihen unterteilt:

LL: sehr leichte Reihe
L: leichte Reihe
S: schwere Reihe

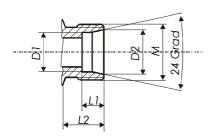
Häufig werden bei Verschraubungen Angaben zum Nenndruck PN genannt. Der Nenndruck PN ist lediglich eine Kennzahl, welche zur Identifizierung bzw. Bezeichnung eines Bauteils oder einer Anlage dient. Die Bezeichnung PN wird international verwendet.


HANSA-FLEX Schneidringverschraubungen haben bei Angabe des Nenndrucks PN eine 4-fache Sicherheit. Bördelverschraubungen nach ISO 8434-2 haben ebenfalls einen Sicherheitsfaktor von 4.

Hierbei werden eine fehlerfreie Montage der Verschraubung sowie eine einwandfreie Verlegung des Rohrleitungssystems vorausgesetzt.

Die HANSA-FLEX-Schneidringverschraubungen sind jedoch so ausgelegt, dass die in DIN EN ISO 8434-1 geforderten Druckwerte noch übertroffen werden. Die angegebenen Druckbereiche beziehen sich auf die Anschlussform. Zu beachten sind die unterschiedlichen Einschraubformen, es können gegebenenfalls Abweichungen entstehen.

Rückfragen bitte an die Abteilung Anwendungstechnik.


MAX. ARBEITSDRUCK VON 24°-SCHNEIDRINGVERSCHRAUBUNGEN

^{*)} ist nicht mehr genormt

10. ROHRSEITIGER ANSCHLUSS VON SCHNEIDRINGVERSCHRAUBUNGEN

Der rohrseitige Anschluss von HANSA-FLEX-Schneidringverschraubungen ist nach DIN 3861, Bohrungsform W bzw. DIN EN ISO 8434-1 genormt und garantiert somit eine Austauschbarkeit auch mit metrischen Armaturen für Hydraulikschlauchleitungen:

Baureihe	Rohr-Außen- durchmesser	Nenndruck PN in bar	М	L1	L2	D1	D2
LL	4	100	M8x1	4	8	4	5
LL	5	100	M10x1	5,5	8	5	6,5
LL	6	100	M10x1	5,5	8	6	7,5
LL	8	100	M12x1	5,5	9	8	9,5
L	6	315	M12x1,5	7	10	6	8,1
L	8	315	M14x1,5	7	10	8	10,1
L	10	315	M16x1,5	7	11	10	12,3
L	12	315	M18x1,5	7	11	12	14,3
L	15	315	M22x1,5	7	12	15	17,3
L	18	315	M26x1,5	7,5	12	18	20,3
L	22	160	M30x2	7,5	14	22	24,3
L	28	160	M35x2	7,5	14	28	30,3

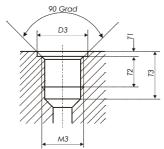
Baureihe	Rohr-Außen- durchmesser	Nenndruck PN in bar	М	L1	L2	D1	D2
L	35	160	M45x2	10,5	16	35,3	38
L	42	160	M52x2	11	16	42,3	45
S	6	630	M14x1,5	7	12	6	8,1
S	8	630	M16x1,5	7	12	8	10,1
S	10	630	M18x1,5	7,5	12	10	12,3
S	12	630	M20x1,5	7,5	12	12	14,3
S*	14	630	M22x1,5	8	14	14	16,3
S	16	400	M24x1,5	8,5	14	16	18,3
S	20	400	M30x2	10,5	16	20	22,9
S	25	400	M36x2	12	18	25	27,9
S	30	400	M42x2	13,5	20	30	33
S	38	315	M52x2	16	22	38,3	41

^{*)} Die Größe 14S ist **nicht** mehr genormt, und hat keine Zulassung durch den Germanischer Lloyd

11. EINSCHRAUBZAPFEN UND -LÖCHER VON HANSA-FLEX SCHNEIDRINGVERSCHRAUBUNGEN

HANSA-FLEX Schneidringverschraubungen sind mit einer Vielzahl von genormten Einschraubgewinden lieferbar und ermöglichen somit eine Vielzahl von Anwendungen.

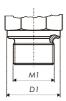
HANSA/FLEX


DIN 3852 Teil 1 Form B bzw ISO 9974-3 Abdichtung durch Dichtkante

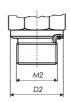
ISO 9974-2 Form E
Abdichtung durch Elastomerdichtung

Baureihe	Rohr-Außen- durchmesser	M1/M2	M3	D1	D2	T1	T2	ТЗ	D3
LL	4	M8x1	M8x1	12	-	1	8	13,5	13
LL	6	M10x1	M10x1	14	13,9	1	8	13,5	15
LL	8	M10x1	M10x1	14	13,9	1	8	13,5	15
L	6	M10x1	M10x1	14	13,9	1	8	13,5	15
L	8	M12x1,5	M12x1,5	17	16,9	1,5	12	18,5	18
L	10	M14x1,5	M14x1,5	19	18,9	1,5	14	18,5	20
L	12	M16x1,5	M16x1,5	21	21,9	1,5	12	18,5	23
L	15	M18x1,5	M18x1,5	23	23,9	2	12	18,5	25
L	18	M22x1,5	M22x1,5	27	26,9	2,5	14	20,5	28
L	22	M26x1,5	M26x1,5	31	31,9	2,5	16	22,5	33
L	28	M33x2	M33x2	39	39,9	2,5	18	26	41
L	35	M42x2	M42x2	49	49,9	2,5	20	28	51

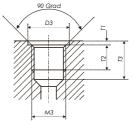
a) **metrische** Einschraubzapfen und -löcher nach DIN 3852 Teil 1, Form B, sowie ISO 9974-2 Form E mit dem dazugehörigen Einschraubloch Form X



Einschraubloch nach ISO 9974-1 bzw. DIN 3852 Teil 1, Form X für Einschraubzapfen Form A, B und E


Baureihe	Rohr-Außen- durchmesser	M1/M2	M3	D1	D2	T1	T2	Т3	D3
L	42	M48x2	M48x2	55	54,9	2,5	22	30	56
S	6	M12x1,5	M12x1,5	17	16,9	1,5	12	18,5	18
S	8	M14x1,5	M14x1,5	19	18,9	1,5	12	18,5	20
S	10	M16x1,5	M16x1,5	21	21,9	1,5	12	18,5	23
S	12	M18x1,5	M18x1,5	23	23,9	2	12	18,5	25
S	14	M20x1,5	M20x1,5	25	25,9	2	14	20,5	27
S	16	M22x1,5	M22x1,5	27	26,9	2,5	14	20,5	28
S	20	M27x2	M27x2	32	31,9	2,5	16	24	33
S	25	M33x2	M33x2	39	39,9	2,5	18	26	41
S	30	M42x2	M42x2	49	49,9	2,5	20	28	51
S	38	M48x2	M48x2	55	54,9	2,5	22	30	56

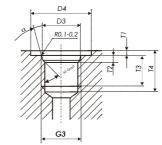
Katalog 2 - Stand: 06/2014


b) **zöllige** Einschraubzapfen und -löcher nach DIN 3852 Teil 2, Form B, sowie ISO 1179-2 Form E mit dem dazugehörigen Einschraubloch Form X

DIN 3852 Teil 2 Form B bzw ISO 1179-4 Abdichtung durch Dichtkante

ISO 1179-2 Form E Abdichtung durch Elastomerdichtung

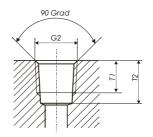
Einschraubloch nach ISO 9974-1 bzw. DIN 3852 Teil 2, Form X für Einschraubzapfen Form A, B und E


Baureihe	Rohr-Außen- durchmesser	G1/G2	G3	D1	D2	T1	T2	Т3	D3
LL	4	G 1/8"A	G 1/8"	14	13,9	1	8	13	15
LL	6	G 1/8"A	G 1/8"	14	13,9	1	8	13	15
LL	8	G 1/8"A	G 1/8"	14	13,9	1	8	13	15
L	6	G 1/8"A	G 1/8"	14	13,9	1	8	13	15
L	8	G 1/4"A	G 1/4"	18	18,9	1,5	12	18,5	20
L	10	G 1/4"A	G 1/4"	18	18,9	1,5	12	18,5	20
L	12	G 3/8"A	G 3/8"	22	21,9	2	12	18,5	23
L	15	G 1/2"A	G 1/2"	26	26,9	2,5	14	22	28
L	18	G 1/2"A	G 1/2"	26	26,9	2,5	14	22	29
L	22	G 3/4"A	G 3/4"	32	31,9	2,5	16	24	33
L	28	G 1"A	G 1"	39	39,9	2,5	18	27	41
L	35	G 1 1/4"A	G 1 1/4"	49	49,9	2,5	20	29	51

Baureihe	Rohr-Außen- durchmesser	G1/G2	G3	D1	D2	T1	T2	Т3	D3
L	42	G 1 1/2"A	G 1 1/2"	55	54,9	2,5	22	31	56
S	6	G 1/4"A	G 1/4"	18	18,9	1,5	12	18,5	20
S	8	G 1/4"A	G 1/4"	18	18,9	1,5	12	18,5	20
S	10	G 3/8"A	G 3/8"	22	21,9	2	12	18,5	23
S	12	G 3/8"A	G 3/8"	22	21,9	2	12	18,5	23
S	14	G 1/2"A	G 1/2"	26	26,9	2,5	14	22	28
S	16	G 1/2"A	G 1/2"	26	26,9	2,5	14	22	28
S	20	G 3/4"A	G 3/4"	32	31,9	2,5	16	24	33
S	25	G 1"A	G 1"	39	39,9	2,5	18	27	41
S	30	G 1 1/4"A	G 1 1/4"	49	49,9	2,5	20	29	51
S	38	G 1 1/2"A	G 1 1/2"	55	54,9	2,5	22	31	56

c) Einschraubzapfen und -löcher für Rohrverschraubungen mit zylindrischen US-amerikanischen Gewindeanschlüssen nach ISO 11926-2/3

Einschraubzapfen mit UN-UNF-2A Gewinde und O-Ring Abdichtung nach ISO 11926-2 und -3


Einschraubloch mit UN/UNF 2B Gewinde für O-Ring Abdichtung nach ISO 11926-1

Bau- reihe	Rohr-Außen- durchmesser	G2/G3	D2	D3	D4	T1	T2	ТЗ	T4	α	O-Ring
L	6, 8, 10	7/16"-20 UNF	16	12,4	21	1,6	2,4	11,5	14	12°	8,92 x 1,83
L	8	1/2"-20 UNF	17	14	23	1,6	2,4	11,5	14	12°	10,52 x 1,83
L	6, 10, 12	9/16"-18 UNF	17,6	15,6	25	1,6	2,5	12,7	15,5	12°	11,89 x 1,98
L	12, 15, 18	3/4"-16 UNF	22,3	20,6	30	2,4	2,5	14,3	17,5	15°	16,36 x 2,2
L	12, 18, 22	7/8"-14 UNF	25,5	23,9	34	2,4	2,5	16,7	20	15°	19,18 x 2,46
L	22, 28	1 1/16"-12 UN	31,9	29,2	41	2,4	3,3	19	23	15°	23,47 x 2,95
L	22, 28, 35	1 5/16"-12 UN	38,2	35,5	49	3,2	3,3	19	23	15°	29,74 x 2,95
L	35, 42	1 5/8"-12 UN	48	43,5	58	3,2	3,3	19	23	15°	37,47 x 3
L	42	1 7/8"-12 UN	55	49,8	65	3,2	3,3	19	23	15°	43,69 x 3
S	6, 8	7/16"-20 UNF	16	12,4	21	1,6	2,4	11,5	14	15°	8,92 x 1,83
S	6	1/2"-20 UNF	17	14	23	1,6	2,4	11,5	14	15°	10,52 x 1,83
S	10, 12	9/16"-18 UNF	17,6	15,6	25	1,6	2,5	12,7	15,5	15°	11,89 x 1,98
S	12, 14	3/4"-16 UNF	22,3	20,6	30	2,4	2,5	14,3	17,5	15°	16,36 x 2,2
S	16, 20	3/4"-16 UNF	22,3	20,6	30	2,4	2,5	14,3	17,5	15°	16,36 x 2,2
S	16, 20	7/8"-14 UNF	25,5	23,9	34	2,4	2,5	16,7	20	15°	19,18 x 2,46
S	20, 25	1 1/16"-12 UN	31,9	29,2	41	2,4	3,3	19	23	15°	23,47 x 2,95
S	25, 30	1 5/16"-12 UN	38,2	35,5	49	3,2	3,3	19	23	15°	29,74 x 2,95
S	30, 38	1 5/8"-12 UN	48	43,5	58	3,2	3,3	19	23	15°	37,47 x 3
S	38	1 7/8"-12 UN	55	49,8	65	3,2	3,3	19	23	15°	43,69 x 3

d) Einschraubzapfen und -löcher für Rohrverschraubungen mit NPT-Gewinde nach ANSI/ASME B1.20.1-1983

Einschraubzapfen mit NPT-Einschraubgewinde nach ANSI/ASME B1.20.1-1983

Einschraubloch für NPT-Gewinde nach ANSI/ASME B1.20.1-1983

Baureihe	Rohr-Außen- durchmesser	G1/G2	T1	T2
L	6	1/8"-27 NPT	6,9	11,6
L	8	1/4"-18 NPT	10	16,4
L	10	1/4"-18 NPT	10	16,4
L	12	3/8"-18 NPT	10,3	17,4
L	15	1/2"-14 NPT	13,6	22,6
L	18	1/2"-14 NPT	13,6	22,6
L	22	3/4"-14 NPT	14,1	23,1
L	28	1"-11,5 NPT	16,8	27,8
L	35	1 1/4"-11,5 NPT	17,3	28,3
L	42	1 1/2"-11,5 NPT	17,3	28,3

Baureihe	Rohr-Außen- durchmesser	G1/G2	T1	T2
S	6	1/4"-18 NPT	10	16,4
S	8	1/4"-18 NPT	10	16,4
S	10	3/8"-18 NPT	10,3	17,4
S	12	3/8"-18 NPT	10,3	17,4
S	14	1/2"-14 NPT	13,6	22,6
S	16	1/2"-14 NPT	13,6	22,6
S	20	3/4"-14 NPT	14,1	23,1
S	25	1"-11,5 NPT	16,8	27,8
S	30	1 1/4"-11,5 NPT	17,3	28,3
S	38	1 1/2"-11,5 NPT	17,3	28,3

12. ANZUGSMOMENTE FÜR EINSCHRAUBZAPFEN VON HANSA-FLEX SCHNEIDRINGVERSCHRAUBUNGEN

Die nachfolgend aufgeführten Anzugsmomente gelten für Verschraubungen aus Stahl mit Einschraubzapfen, für Verschlussschrauben sowie für Schwenkverschraubungen, jeweils mit HANSA-FLEX CrVI-freie Zink-Nickel-Oberfläche und einem Gegenkörper, der aus dem gleichen Werkstoff gefertigt ist.

Anzugsmomente für Verschraubungen aus Edelstahl bzw. für Verschraubungen mit UN/UNF-Gewinden auf Anfrage. Um eine optimale Abdichtung zu erreichen, müssen kegelartige Einschraubgewinde mit einem zusätzlichen Dichtmittel, wie z.B. Teflonband, versehen werden.

ANMERKUNG: Die Drehmomentwerte gelten nur für die Prüfung.
Die Anzugsdrehmomente bei der Montage hängen von vielen Faktoren ab, einschließlich
Schmierung. Überzug und Oberflächenbehandlung. Der Hersteller ist zu befragen.

		Schillierung, oberzug und obe	inacifetibeliandiding. Del fierstelle			
Baureihe	Gewinde	Anzugsmoment in Nm ISO 1179-2 Form E (ED Weichdichtung)	Anzugsmoment in Nm ISO 1179-4 Form B (Metall Dichtkante)	Anzugsmoment in Nm ISO 1179-3 Form G, H (Q-Ring Kammering)	Anzugsmoment in NM für Verschlußschrauben	Anzugsmoment in Nm für Schwenkverschrau- bungen
L	G 1/8"	20	20	25	12	25
L	G 1/4"	50	40	50	18	40
L	G 3/8"	80	80	80	40	80
L	G 1/2"	100	150	105	75	120
L	G 3/4"	200	200	220	110	180
L	G 1"	380	380	370	190	300
L	G 1 1/4"	500	600	500	240	300
L	G 1 1/2"	600	700	600	300	600
S	G 1/8"				12	25
S	G 1/4"	60	60		18	40
S	G 3/8"	90	100		40	80
S	G 1/2"	130	170		75	120
S	G 3/4"	200	320		110	180
S	G 1"	380	380		190	300
S	G 1 1/4"	500	600		240	300
S	G 1 1/2"	600	800		300	600

Baureihe	Gewinde	Anzugsmoment in Nm ISO 9974-2 Form E (ED Weichdichtung)	Anzugsmoment in Nm ISO 9974-3 Form B (Metall Dichtkante)	Anzugsmoment in NM für Verschlußschrauben	Anzugsmoment in Nm für Schwenkverschrau- bungen
L	M10x1	20	20	12	25
L	M12x1,5	30	30	18	30
L	M14x1,5	50	50	20	50
L	M16x1,5	60	70	35	60
L	M18x1,5	80	90	50	70
L	M22,1,5	140	150	70	130
L	M26x1,5	200	210	85	140
L	M33x2	380	380	150	280
L	M42x2	500	550	280	280
L	M48x2	600	700	350	500
S	M10x1			12	25
S	M12x1,5	45	45	18	30
S	M14x1,5	60	60	20	50
S	M16x1,5	80	90	35	60
S	M18x1,5	100	120	50	70
S	M20x1,5	140	170	60	110
S	M22x1,5	150	190	70	130
S	M26x1,5			85	140
S	M27x2	200	320	100	150
S	M33x2	380	450	150	280
S	M42x2	500	600	280	280
S	M48x2	600	800	350	500

13. BESTIMMUNG DES DRUCKVERLUSTES IN ROHRLEITUNGEN

Die in hydraulischen Rohrleitungssystemen zwangsläufig auftretenden Druckverluste können entweder meßtechnisch oder rechnerisch erfaßt werden.

Die genaue rechnerische Bestimmung dieser Verluste ist nur mit einem erheblichen Aufwand möglich, an dieser Stelle sollen jedoch einige einfache Gleichungen zur überschlägigen Bestimmung von Druckverlusten in geraden Rohrleitungen bzw. Verschraubungen gegeben werden.

Die Druckverluste, bzw. der Durchflusswiderstand, in einem Leitungssystem hängen ab vom Rohrinnendurchmesser, von der Strömungsgeschwindigkeit und von den Eigenschaften (Dichte und Viskosität) des Hydrauliköls ab.

Druckverluste werden durch die sogenannte Flüssigkeitsreibung, d.h. durch die Reibung des Öls an den Rohrwänden und die innere Reibung des Fluids verursacht.

Ab einer bestimmten Geschwindigkeit schlägt die Strömung des Öls von einer laminaren in die turbulente Strömung um. Turbulente Strömungen führen zu einer erhöhten Wärmebildung im System und haben Druck- bzw. Leistungsverluste zur Folge.

Das Verhalten der Strömung wird auch durch die sogenannte Reynoldsche Zahl Re gekennzeichnet.

Überschreitet diese Zahl Re einen bestimmten Wert, geht die laminare Strömung des Öls in eine turbulente Strömung über.

In Rohrleitungen wird laminare Strömung angestrebt. In Ventilen, Kupplungen und Kugelhähnen tritt meistens turbulente Strömung auf.

Die Druckverluste in geraden Rohrleitungen lassen sich nach den folgenden Gleichungen überschlägig bestimmen:

$$\Delta p = \lambda \times \frac{l \times \rho \times V^2 \times 10}{d \times 2} \quad \text{in bar}$$

 $\Delta p = Druckverlust$ bei gerader Rohrleitung (laminare bzw. turbulente Strömung) in bar

 $\lambda = Rohrreibungszahl$

 $\rho = \text{Dichte des Hydraulik\"ols in kg/dm}^3$, $\rho = 0.89 \text{ kg/dm}^3 = 890 \text{ kg/m}^3$

I = Leitungslänge in Metern m

v = Strömungsgeschwindigkeit des Öls in der Leitung in m/s

d = Innendurchmesser der Leitung in mm

v = kinematische Viskosität in cSt oder mm²/s

Q = Flüssigkeitsstrom in der Leitung in I/min

Rohrreibungszahl für laminare Strömung, Re'2320

$$\lambda_{lam} = 64/Re$$

Rohrreibungszahl für turbulente Strömung, Re∃2320

$$\lambda_{turb.} = \frac{0.316}{\sqrt[4]{\text{Re}}}$$

Reynoldsche Zahl

$$Re = \frac{V \times d}{V} \times 10^3$$

Strömungsgeschwindigkeit

$$V = \frac{Q}{6 \times d^2 \times \frac{\pi}{4}} \times 10^2$$

Beispiel:

Gegeben sei eine gerade Rohrleitung mit I = 1 m und einem Innendurchmesser d = 25 mm. Die Durchflussmenge Q beträgt 150 l/min und die Strömungsgeschwindigkeit des Öls 5 m/s. Eingesetzt wird ein Standard-Hydrauliköl HLP 46 mit einer kinematischen Viskosität von

 $v = 46 \text{ mm}^2/\text{s} = 46 \text{ cSt}$ und einer Dichte von 0,89 kg/dm 3 Gesucht wird der auftretende Druckverlust über die Gesamtlänge von 1 m.

Lösung:

1. Bestimmung der Revnoldschen Zahl Re:

Re =
$$\frac{V \times d}{v} \times 10^3 = \frac{5 \frac{m}{s} \times 25 mm}{46 \frac{mm^2}{s}} \times 10^3 = 2713$$

Die Reynoldszahl Re ist in diesem Fall größer als 2320, daher liegt eine turbulente Strömung vor.

2. Bestimmung der Rohrreibungszahl für turbulente Strömung

$$\lambda_{\textit{turb.}} = \frac{0.316}{\sqrt[4]{Re}} = \frac{0.316}{\sqrt[4]{2713}} = 0.0437$$

Katalog 2 - Stand: 06/2014

3. Berechnung des Druckverlustes über die Gesamtlänge

$$\Delta p = \lambda \times \frac{l \times \rho \times V^2 \times 10}{d \times 2} = 0.0437 \frac{1 m \times 0.89 \frac{kg}{dm^3} \times \left(5 \frac{m}{s}\right)^2 \times 10}{2 \times 25 mm} = 0.194 \ bar$$

Es ist jedoch zu beachten, dass diese Gleichungen nur für gerade Rohrleitungsabschnitte gelten. Ein Rohrleitungssystem setzt sich jedoch aus geraden und gebogenen Abschnitten sowie Ver-schraubungen und anderen Produkten aus der hydraulischen Verbindungstechnik zusammen.

Daher müssen die Druckverluste der einzelnen Elemente jeweils getrennt, entweder durch Be-rechnung oder Messung, bestimmt und zu einem Gesamtverlust addiert werden.

Bei der überschlägigen Bestimmung von Druckverlusten der einzelnen Bauteile wird mit einem Widerstandsbeiwert ξ gerechnet.

Der Druckverlust eines Bauteils läßt sich nach der folgenden Gleichung bestimmen:

$$\Delta p = \xi \times \rho \times \frac{1}{2} V^2$$

 $\Delta p = Druckverlust des Bauteils in bar$

 ξ = Widerstandsbeiwert (dimensionslos)

 ρ = Dichte des Hydrauliköls in kg/dm³, ρ = 0,89 kg/dm³ = 890 kg/m³

v = Strömungsgeschwindigkeit des Öls in der Leitung in m/s

Es ist zu beachten, dass noch eine Vielzahl von Faktoren, die in den vorgestellten Bauteilen auftretenden, Druckverluste beeinflussen kann und diese Berechnungen nur eine überschlägige Bestimmung ermöglichen.

Daher sind in wichtigen Fällen entsprechende Versuche im Prüfstand durchzuführen.

MONTAGEANLEITUNG SCHNEIDRING / ROHRVERSCHRAUBUNG

Die von Hydraulikleitungen ausgehende potenzielle Gefährdung von Mensch und Umwelt wird in der Praxis sehr häufig unterschätzt. Eine falsch ausgeführte Montage oder unsachgemäße Verwendung von Verschraubungen, Rohren und Zubehör kann die Funktionssicherheit des Produktes beeinträchtigen und zum Ausfall und damit zu Personen- und Sachschäden führen. Öldurchschüsse und geplatzte Leitungen können im Extremfall sogar zu Todesfällen führen.

Daher weisen wir ausdrücklich auf die Einhaltung dieser Montageanweisungen hin!

Besondere Verantwortung trifft auch die Hersteller und Betreiber von Maschinen. Sie sind verantwortlich für:

- den bestimmungsgemäßen Einsatz der Rohrleitungen und Verschraubungen
- die planmäßige Überwachung und systematische Kontrolle durch die befähigte Person mit Sachkunde Leitungstechnik
- · das Erkennen und Abstellen von Mängeln

Diese aktive Wahrnehmung der Verantwortung ist von rechtlichen Rahmenbedingungen begleitet.

Ausgehend vom Arbeitsschutz, dem Geräte- und Produktsicherheitsgesetz, der Maschinen- und

Druckgeräterichtlinie sowie der Betriebssicherheitsverordnung werden die Aufgaben weiter konkretisiert

und zu Handlungsvorschriften der Beteiligten.

Dieser Leitfaden ist eine Ergänzung zu den geltenden Normen, Richtlinien und Vorschriften. Er gibt den derzeitigen Stand der Technik wieder. Ein Anspruch auf Vollständigkeit besteht nicht.

Achtung: Vor jeder Montage ist jeweils auf den ordnungsgemäßen Zustand der Werkzeuge und Materialien zu achten.

INHALT

MONTAGE SCHNFIDRING AUS STAHL

- 1. Vollständige Schneidringmontage im gehärteten Montagestutzen
- 2. Vollständige Schneidringmontage im Verschraubungsstutzen
- 3. Vormontage im Montage- oder Verschraubungsstutzen
- 4. Fertigmontage von werksseitig vormontierten Verschraubungen im Verschraubungsstutzen

MONTAGE VON 24° DICHTKEGELVERSCHRAUBUNGEN (AOL/AOS)

Montage von HANSA-FLEX 24° Dichtkegelverschraubungen

MONTAGE SCHNEIDRING AUS EDELSTAHL (VA)

- 6. Vormontage im gehärteten Montagestutzen
- 7. Fertigmontage von werksseitig vormontierten Edelstahlverschraubungsstutzen

VERSTÄRKUNGSHÜLSEN

8. Richtige Auswahl von Verstärkungshülsen

SRWD..VI WEICHDICHTUNG

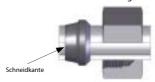
9. Montage der SRWD..VI Weichdichtung

Für eine vollständige Schneidringmontage im Montagestutzen dürfen nur Montagestutzen verwendet werden, die ein entsprechendes Tiefenmaß T aufweisen!

	T mm ± 0,05		T mm ± 0,05		
VOM NW04 HL	7,00	VOM NW03 HS	7,00		
VOM NW06 HL	7,00	VOM NW04 HS	7,00		
VOM NW08 HL	7,00	VOM NW06 HS	7,50		
VOM NW10 HL	7,00	VOM NW08 HS	7,50		
VOM NW13 HL	7,00	VOM NW10 HS	8,00		
VOM NW16 HL	7,50	VOM NW13 HS	8,50		
VOM NW20 HL	7,50	VOM NW16 HS	10,50		
VOM NW25 HL	7,50	VOM NW20 HS	12,00		
VOM NW32 HL	10,50	VOM NW25 HS	13,50		
VOM NW40 HL	11,00	VOM NW32 HS	16,00		
Die Toleranzen der Baureihe LL entsprechen					

den Toleranzen der Baureihe L

- \bullet Vor jeder Rohrmontage sind die Rohre rechtwinklig \pm 0,5° abzulängen. Hierbei darf kein Rohrabschneider oder Trennschleifer benutzt werden.
- · Rohre innen und außen leicht entgraten.
- · Rohre nach dem Entgraten reinigen.
- · Bei dünnwandigen Rohren Verstärkungshülsen verwenden.
- Markierungen (Position der Mutter) erleichtern die Bestimmung der Umdrehungen für die wegabhängige Montage.
- Gegebenenfalls entsprechende Schlüsselverlängerungen verwenden.


1. VOLLSTÄNDIGE SCHNEIDRINGMONTAGE IM GEHÄRTETEN MONTAGESTUTZEN (VOMNW...)

EINLEITUNG

 Diese Anweisung beschreibt die vollständige Montage eines Schneidringes (SRD) auf dem Rohr im Montagestutzen (VOMNW...). Es handelt sich nicht um eine Vormontage!

VORBEREITUNG

Gewinde und Konus des Montagestutzens sowie Gewinde der Überwurfmutter leicht einölen.

 Überwurfmutter und Schneidring auf da Rohr schiben, dabei auf die richtige Lage des Schneidrings achten, Schneidkanten des Schneidringes müssen zum Rohrende zeigen, sonst erfolgt eine Fehlmontage.

SCHNEIDRING-MONTAGE

- Überwurfmutter bis zum deutlich spürbaren Kraftanstieg* anziehen, dabei das Rohr fest gegen Anschlag im Montagestutzen drücken, sonst erfolgt kein Rohreinschnitt. Das Rohr darf sich bei der Montage nicht mitdrehen.
- Überwurfmutter 1 1/2 Umdrehungen mit Schlüssel anziehen.

KONTROLLE

 Rohr oder Verschraubung demontieren und überprüfen, ob ein deutlich sichtbarer Bundaufwurf vor der ersten (vorderen) Schneide vorhanden ist. Hierbei darf sich der Schneidring drehen, aber axial nicht verschieben lassen.

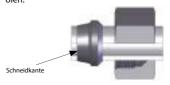
WIEDERHOL-MONTAGE

Gewinde der Überwurfmutter und Gewinde des Verschraubungsstutzens mit Öl versehen.
 Überwurfmutter bis zum deutlich spürbaren Kraftanstieg* auf dem Verschraubungskörper festschrauben. Überwurfmutter der Verschraubung oder Rohr max. 1/4 Umdrehung mit dem Schlüssel weiterdrehen (Festziehen / Dichtziehen).

Die Konen der Montagestutzen unterliegen einem üblichen Verschleiß und müssen in regelmäßigen Abständen mit Konuslehren überprüft werden.

${\bf *Definition} \hbox{\it , deutlich sp\"{u}rbarer Kraftanstieg":}$

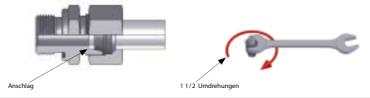
Überwurfmutter bis zum Punkt anziehen, an dem sich die Überwurfmutter deutlich schwerer drehen lässt. Hierbei müssen z.B. leichte Schäden am Gewinde, die sich durch leichtes Festhaken der Überwurfmutter bemerkbar machen, überwunden werden. Bei Dichtkegelverschaubungen mit O-Ring (AOL / AOS) muss die Vorspannung des O-Ringes überbrückt werden und der Dichtkegel muss metallisch am Konus des HL/HS- Anschlusses anliegen.


2. VOLLSTÄNDIGE SCHNEIDRINGMONTAGE IM VERSCHRAUBUNGSSTUTZEN

EINLEITUNG

 Diese Anweisung beschreibt die vollständige Montage eines Schneidringes (SRD) auf dem Rohr im Rohrverschraubungsstutzen. Es handelt sich nicht um eine Vormontage!

VORBEREITUNG


 Gewinde und Konus des Verschraubungsstutzens sowie Gewinde der Überwurfmutter leicht einölen.

 Überwurfmutter und Schneidring auf das Rohr schieben, dabei auf die richtige Lage des Schneidrings achten, Schneidkanten des Schneidringes müssen zum Rohrende zeigen, sonst erfolgt eine Fehlmontage.

SCHNEIDRING-MONTAGE

- Überwurfmutter bis zum deutlich spürbaren Kraftanstieg* anziehen, dabei das Rohr fest gegen Anschlag im Montagestutzen drücken, sonst erfolgt kein Rohreinschnitt. Das Rohr darf sich bei der Montage nicht mitdrehen.
- Überwurfmutter 1 1/2 Umdrehungen mit Schlüssel anziehen. Dabei Verschraubungsstutzen mit Schlüssel gegenhalten.

KONTROLLE

Rohr demontieren und überprüfen, ob ein deutlich sichtbarer Bundaufwurf vor der ersten (vorderen) Schneide vorhanden ist. Hierbei darf sich der Schneidring drehen, aber axial nicht verschieben lassen.

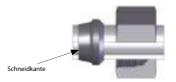
WIEDERHOL-MONTAGE

Gewinde der Überwurfmutter, Schneidring und Gewinde des Verschraubungsstutzens mit Öl versehen. Überwurfmutter bis zum deutlich spürbaren Kraftanstieg* auf dem Verschraubungskörper festschrauben. Überwurfmutter der Verschraubung oder Rohr max. 1/4 Umdrehung mit dem Schlüssel weiterdrehen (Festziehen / Dichtziehen)

Jeder Verschraubungsstutzen sollte nur einmal zur Schneidringmontage auf dem Rohr verwendet werden, jede weitere Benutzung kann zur Beeinträchtigung der Funktion führen. Ab einem Rohrdurchmesser von 30 mm empfehlen wir, die Montage in einem Schraubstock durchzuführen.

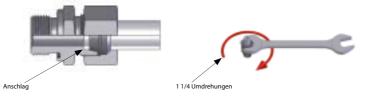
*Definition, deutlich spürbarer Kraftanstieg":

Überwurfmutter bis zum Punkt anziehen, an dem sich die Überwurfmutter deutlich schwerer drehen lässt. Hierbei müssen z.B. leichte Schäden am Gewinde, die sich durch leichtes Festhaken der Überwurfmutter bemerkbar machen, überwunden werden. Bei Dichtkegelwerschraubungen mit O-Ring (AOL / AOS) muss die Vorspannung des O-Ringes überbrückt werden und der Dichtkegel muss metallisch am Konus des HL/HS- Anschlusses anliegen.


3. VORMONTAGE IM MONTAGE- ODER VERSCHRAUBUNGSSTUTZEN

EINLEITUNG

 Diese Anweisung beschreibt die Vormontage eines Schneidringes (SRD) auf dem Rohr im Rohrverschraubungsstutzen oder Montagestutzen.


VORBEREITUNG

- Gewinde und Konus des Verschraubungsstutzens sowie Gewinde der Überwurfmutter leicht einölen.
- Überwurfmutter und Schneidring auf das Rohr schieben, dabei auf die richtige Lage des Schneidrings achten, Schneidkanten des Schneidringes müssen zum Rohrende zeigen, sonst erfolgt eine Fehlmontage.

SCHNEIDRING-

- Überwurfmutter bis zum deutlich spürbaren Kraftanstieg* anziehen, dabei das Rohr fest gegen Anschlag im Verschaubungsstutzen drücken, sonst erfolgt kein Rohreinschnitt. Das Rohr darf sich bei der Montage nicht mitdrehen.
- Überwurfmutter 1 1/4 Umdrehungen mit Schlüssel anziehen. Dabei Verschraubungsstutzen mit Schlüssel gegenhalten.

KONTROLLE

 Rohr demontieren und überprüfen, ob ein deutlich sichtbarer Bundaufwurf vor der ersten (vorderen) Schneide vorhanden ist. Hierbei darf sich der Schneidring drehen, aber axial nicht verschieben lassen.

* Definition "deutlich spürbarer Kraftanstieg":

Überwurfmutter bis zum Punkt anziehen, an dem sich die Überwurfmutter deutlich schwerer drehen lässt. Hierbei müssen z.B. leichte Schäden am Gewinde, die sich durch leichtes Festhaken der Überwurfmutter bemerkbar machen, überwunden werden.

Bei Dichtkegelverschraubungen mit O-Ring (AOL / AOS) muss die Vorspannung des O-Ringes überbrückt werden und der Dichtkegel muss metallisch am Konus des HL/HS- Anschlusses anliegen.

4. FERTIGMONTAGE VON WERKSSEITIG VORMONTIERTEN VERSCHRAUBUNGEN IM VERSCHRAUBUNGSSTUTZEN

- Bei diesen Verschraubungen ist der Schneidring werksseitig schon vormontiert.
- Richtige Lage, Sitz und Bundaufwurf des bereits vorhandenen Schneidringes kontrollieren.
- Gewinde der Überwurfmutter, Schneidring und Gewinde des Verschraubungsstutzens mit Öl versehen.
- Überwurfmutter bis zum deutlich spürbaren Kraftanstieg* festschrauben.
- Überwurfmutter 1/4 Umdrehung anziehen, hierbei Verschraubungsstutzen mit Schlüssel gegenhalten.

Wir empfehlen auf HANSA-FLEX 24° Dichtkegelverschraubungen auszuweichen.

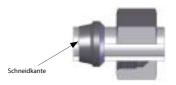
5. MONTAGE VON 24° DICHTKEGELVERSCHRAUBUNGEN (AOL/AOS)

- Gewinde und Konus des Verschraubungsstutzens sowie Gewinde der Überwurfmutter leicht einölen.
- · Verschraubungskörper (Dichtkegel) gerade auf die Verschraubung aufsetzen.
- Überwurfmutter der Dichtkegelverschraubung bis zum deutlich spürbaren Kraftanstieg* auf den Verschraubungskörper festschrauben.
- Überwurfmutter der Dichtkegelverschraubung oder Rohr max. 1/4 Umdrehung mit dem Schlüssel weiterdrehen (Festziehen / Dichtziehen).

* Definition "deutlich spürbarer Kraftanstieg":

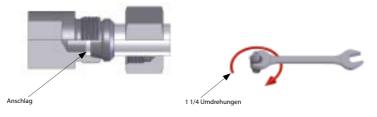
Überwurfmutter bis zum Punkt anziehen, an dem sich die Überwurfmutter deutlich schwerer drehen lässt. Hierbei müssen z.B. leichte Schäden am Gewinde, die sich durch leichtes Festhaken der Überwurfmutter bemerkbar machen, überwunden werden.

Bei Dichtkegelverschraubungen mit O-Ring (AOL / AOS) muss die Vorspannung des O-Ringes überbrückt werden und der Dichtkegel muss metallisch am Konus des HL/HS- Anschlusses anliegen.


6. MONTAGE IM GEHÄRTETEN MONTAGESTUTZEN (VOMNW...) EDELSTAHL

EINLEITUNG

 Diese Anweisung beschreibt die Vormontage eines Schneidringes (SRD...VA) auf dem Edelstahlrohr im Montagestutzen und die Fertigmontage des Schneidringes im Verschraubungskörper.


VORBEREITUNG

- Gewinde und Konus des Montagestutzens sowie Gewinde der Überwurfmutter mit HANSA-FLEX Montagepaste einfetten.
- Überwurfmutter und Schneidring auf das Rohr schieben, dabei auf die richtige Lage des Schneidrings achten, Schneidkanten des Schneidringes müssen zum Rohrende zeigen, sonst erfolgt eine Fehlmontage.

SCHNEIDRING-MONTAGE

- Überwurfmutter bis zum deutlich spürbaren Kraftanstieg* anziehen, dabei Rohr fest gegen Anschlag im Montagestutzen drücken, sonst erfolgt kein Rohreinschnitt.
- Überwurfmutter 1 1/4 Umdrehungen mit Schlüssel anziehen.

KONTROLLE

 Rohr oder Verschraubung demontieren und überprüfen, ob ein deutlich sichtbarer Bundaufwurf vor der ersten (vorderen) Schneide vorhanden ist. Hierbei darf sich der Schneidring drehen, aber nicht axial verschieben lassen.

FERTIG-MONTAGE

Gewinde der Überwurfmutter und Gewinde des Verschraubungsstutzens mit HANSA-FLEX Montagepaste einfetten. Überwurfmutter bis zum deutlich spürbaren Kraftanstieg* auf dem Verschraubungskörper festschrauben. Überwurfmutter ca. 1/2 Umdrehung mit dem Schlüssel weiterdrehen.

WIEDERHOL-MONTAGE

 Gewinde der Überwurfmutter und Gewinde des Verschraubungsstutzens mit HANSA-FLEX Montagepaste einfetten. Überwurfmutter bis zum deutlich spürbaren Kraftanstieg* auf den Verschraubungskörper festschrauben. Überwurfmutter der Verschraubung oder Rohr ca. 1/4 Umdrehung mit dem Schlüssel weiterdrehen (Festziehen / Dichtziehen)

Die Konen der Montagestutzen unterliegen einem üblichen Verschleiß und müssen in regelmäßigen Abständen mit Konuslehren überprüft werden. Jeder Verschraubungsstutzen sollte nur einmal zur Fertigmontage auf dem Rohr verwendet werden, jede weitere Benutzung kann zur Beeinträchtigung der Funktion führen.

Eine Vormontage im Verschraubungsstutzen ist nicht zulässig!

* Definition "deutlich spürbarer Kraftanstieg":

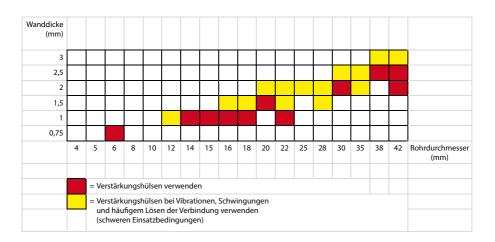
Überwurfmutter bis zum Punkt anziehen, an dem sich die Überwurfmutter deutlich schwerer drehen lässt. Hierbei müssen z.B. leichte Schäden am Gewinde, die sich durch leichtes Festhaken der Überwurfmutter bemerkbar machen, überwunden werden.

Bei Dichtkegelverschraubungen mit O-Ring (AOL / AOS) muss die Vorspannung des O-Ringes überbrückt werden und der Dichtkegel muss metallisch am Konus des HL/HS- Anschlusses anliegen.

7. FERTIGMONTAGE VON WERKSSEITIG VORMONTIERTEN EDELSTAHLVERSCHRAUBUNGEN IM VERSCHRAUBUNGSSTUTZEN

- Bei diesen Verschraubungen ist der Schneidring werksseitig schon vormontiert.
- · Richtige Lage, Sitz und Bundaufwurf des bereits vorhandenen Schneidringes kontrollieren.
- Gewinde der Überwurfmutter, Schneidring und Gewinde des Verschraubungsstutzens mit HANSA-FLEX Montagepaste einfetten.
- Überwurfmutter bis zum deutlich spürbaren Kraftanstieg* festschrauben.
- Überwurfmutter ca. 1/2 Umdrehung anziehen, hierbei Verschraubungsstutzen mit Schlüssel gegenhalten.

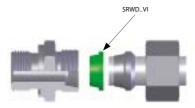
Wir empfehlen auf HANSA-FLEX Dichtkegelverschraubungen auszuweichen.


* Definition "deutlich spürbarer Kraftanstieg":

Überwurfmutter bis zum Punkt anziehen, an dem sich die Überwurfmutter deutlich schwerer drehen lässt. Hierbei müssen z.B. leichte Schäden am Gewinde, die sich durch leichtes Festhaken der Überwurfmutter bemerkbar machen, überwunden werden.

Bei Dichtkegelverschraubungen mit O-Ring (AOL / AOS) muss die Vorspannung des O-Ringes überbrückt werden und der Dichtkegel muss metallisch am Konus des HL/HS- Anschlusses anliegen.

8. RICHTIGE AUSWAHL DER VERSTÄRKUNGSHÜLSEN BEI DÜNNWANDIGEN ROHREN AUS STAHL UND EDELSTAHL


HANSA-FLEX Bezeichnung VSH..ID VSH..IDVA

Die Verstärkungshülsen sind grundsätzlich vor der Schneidringmontage in das Rohr einzuschlagen. Eine spätere Montage der Verstärkungshülsen ist nicht zulässig!

9. MONTAGE DER SRWD..VI WEICHDICHTUNG

- · Die Montage der SRWD..VI Weichdichtung setzt eine richtige Montage des Schneidringes voraus.
- Rohr demontieren und überprüfen, ob ein deutlich sichtbarer Bundaufwurf vor der ersten (vorderen) Schneide vorhanden ist.
- SRWD..VI Weichdichtung über den Schneidring schieben.
- Überwurfmutter bis zum deutlich spürbaren Kraftanstieg* auf dem Verschraubungskörper

- a) Vollständig montierter Schneidring: Überwurfmutter der Verschraubung oder Rohr ca. 30° bis 60° mit dem Schlüssel weiterdrehen (Festziehen / Dichtziehen).
- b) Vormontierter Schneidring: Überwurfmutter der Verschraubung oder Rohr bei vormontierten Schneidringen 1/4 Umdrehung mit dem Schlüssel weiterdrehen.
- Bei jeder Demontage bzw. Neumontage empfehlen wir den Austausch der SRWD..VI Weichdichtung

* Definition "deutlich spürbarer Kraftanstieg":

Überwurfmutter bis zum Punkt anziehen, an dem sich die Überwurfmutter deutlich schwerer drehen lässt. Hierbei müssen z.B. leichte Schäden am Gewinde, die sich durch leichtes Festhaken der Überwurfmutter bemerkbar machen, über-

Bei Dichtkegelverschraubungen mit O-Ring (AOL / AOS) muss die Vorspannung des O-Ringes überbrückt werden und der Dichtkegel muss metallisch am Konus des HL/HS- Anschlusses anliegen.

Ein abweichender Anzugsweg der Schneidringe und Rohrverschraubungen reduziert die Druckbelastung und Lebensdauer der Verbindungen und Verschraubungen. Ein Abrutschen des Schneidringes und Leckagen sind die Folge!

HANSA/FLEX